deflater.js
61.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
/*
* $Id: rawdeflate.js,v 0.5 2013/04/09 14:25:38 dankogai Exp dankogai $
*
* GNU General Public License, version 2 (GPL-2.0)
* http://opensource.org/licenses/GPL-2.0
* Original:
* http://www.onicos.com/staff/iz/amuse/javascript/expert/deflate.txt
*/
function JSDeflater(/*inbuff*/inbuf) {
/* Copyright (C) 1999 Masanao Izumo <iz@onicos.co.jp>
* Version: 1.0.1
* LastModified: Dec 25 1999
*/
var WSIZE = 32768, // Sliding Window size
zip_STORED_BLOCK = 0,
zip_STATIC_TREES = 1,
zip_DYN_TREES = 2,
zip_DEFAULT_LEVEL = 6,
zip_FULL_SEARCH = true,
zip_INBUFSIZ = 32768, // Input buffer size
zip_INBUF_EXTRA = 64, // Extra buffer
zip_OUTBUFSIZ = 1024 * 8,
zip_window_size = 2 * WSIZE,
MIN_MATCH = 3,
MAX_MATCH = 258,
zip_BITS = 16,
LIT_BUFSIZE = 0x2000,
zip_HASH_BITS = 13,
zip_DIST_BUFSIZE = LIT_BUFSIZE,
zip_HASH_SIZE = 1 << zip_HASH_BITS,
zip_HASH_MASK = zip_HASH_SIZE - 1,
zip_WMASK = WSIZE - 1,
zip_NIL = 0, // Tail of hash chains
zip_TOO_FAR = 4096,
zip_MIN_LOOKAHEAD = MAX_MATCH + MIN_MATCH + 1,
zip_MAX_DIST = WSIZE - zip_MIN_LOOKAHEAD,
zip_SMALLEST = 1,
zip_MAX_BITS = 15,
zip_MAX_BL_BITS = 7,
zip_LENGTH_CODES = 29,
zip_LITERALS = 256,
zip_END_BLOCK = 256,
zip_L_CODES = zip_LITERALS + 1 + zip_LENGTH_CODES,
zip_D_CODES = 30,
zip_BL_CODES = 19,
zip_REP_3_6 = 16,
zip_REPZ_3_10 = 17,
zip_REPZ_11_138 = 18,
zip_HEAP_SIZE = 2 * zip_L_CODES + 1,
zip_H_SHIFT = parseInt((zip_HASH_BITS + MIN_MATCH - 1) / MIN_MATCH);
var zip_free_queue, zip_qhead, zip_qtail, zip_initflag, zip_outbuf = null, zip_outcnt, zip_outoff, zip_complete,
zip_window, zip_d_buf, zip_l_buf, zip_prev, zip_bi_buf, zip_bi_valid, zip_block_start, zip_ins_h, zip_hash_head,
zip_prev_match, zip_match_available, zip_match_length, zip_prev_length, zip_strstart, zip_match_start, zip_eofile,
zip_lookahead, zip_max_chain_length, zip_max_lazy_match, zip_compr_level, zip_good_match, zip_nice_match,
zip_dyn_ltree, zip_dyn_dtree, zip_static_ltree, zip_static_dtree, zip_bl_tree, zip_l_desc, zip_d_desc, zip_bl_desc,
zip_bl_count, zip_heap, zip_heap_len, zip_heap_max, zip_depth, zip_length_code, zip_dist_code, zip_base_length,
zip_base_dist, zip_flag_buf, zip_last_lit, zip_last_dist, zip_last_flags, zip_flags, zip_flag_bit, zip_opt_len,
zip_static_len, zip_deflate_data, zip_deflate_pos;
var zip_DeflateCT = function () {
this.fc = 0; // frequency count or bit string
this.dl = 0; // father node in Huffman tree or length of bit string
};
var zip_DeflateTreeDesc = function () {
this.dyn_tree = null; // the dynamic tree
this.static_tree = null; // corresponding static tree or NULL
this.extra_bits = null; // extra bits for each code or NULL
this.extra_base = 0; // base index for extra_bits
this.elems = 0; // max number of elements in the tree
this.max_length = 0; // max bit length for the codes
this.max_code = 0; // largest code with non zero frequency
};
/* Values for max_lazy_match, good_match and max_chain_length, depending on
* the desired pack level (0..9). The values given below have been tuned to
* exclude worst case performance for pathological files. Better values may be
* found for specific files.
*/
var zip_DeflateConfiguration = function (a, b, c, d) {
this.good_length = a; // reduce lazy search above this match length
this.max_lazy = b; // do not perform lazy search above this match length
this.nice_length = c; // quit search above this match length
this.max_chain = d;
};
var zip_DeflateBuffer = function () {
this.next = null;
this.len = 0;
this.ptr = new Array(zip_OUTBUFSIZ);
this.off = 0;
};
/* constant tables */
var zip_extra_lbits = new Array(
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0);
var zip_extra_dbits = new Array(
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13);
var zip_extra_blbits = new Array(
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 7);
var zip_bl_order = new Array(
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15);
var zip_configuration_table = new Array(
new zip_DeflateConfiguration(0, 0, 0, 0),
new zip_DeflateConfiguration(4, 4, 8, 4),
new zip_DeflateConfiguration(4, 5, 16, 8),
new zip_DeflateConfiguration(4, 6, 32, 32),
new zip_DeflateConfiguration(4, 4, 16, 16),
new zip_DeflateConfiguration(8, 16, 32, 32),
new zip_DeflateConfiguration(8, 16, 128, 128),
new zip_DeflateConfiguration(8, 32, 128, 256),
new zip_DeflateConfiguration(32, 128, 258, 1024),
new zip_DeflateConfiguration(32, 258, 258, 4096));
/* routines (deflate) */
var zip_deflate_start = function (level) {
var i;
if (!level)
level = zip_DEFAULT_LEVEL;
else if (level < 1)
level = 1;
else if (level > 9)
level = 9;
zip_compr_level = level;
zip_initflag = false;
zip_eofile = false;
if (zip_outbuf != null)
return;
zip_free_queue = zip_qhead = zip_qtail = null;
zip_outbuf = new Array(zip_OUTBUFSIZ);
zip_window = new Array(zip_window_size);
zip_d_buf = new Array(zip_DIST_BUFSIZE);
zip_l_buf = new Array(zip_INBUFSIZ + zip_INBUF_EXTRA);
zip_prev = new Array(1 << zip_BITS);
zip_dyn_ltree = new Array(zip_HEAP_SIZE);
for (i = 0; i < zip_HEAP_SIZE; i++) zip_dyn_ltree[i] = new zip_DeflateCT();
zip_dyn_dtree = new Array(2 * zip_D_CODES + 1);
for (i = 0; i < 2 * zip_D_CODES + 1; i++) zip_dyn_dtree[i] = new zip_DeflateCT();
zip_static_ltree = new Array(zip_L_CODES + 2);
for (i = 0; i < zip_L_CODES + 2; i++) zip_static_ltree[i] = new zip_DeflateCT();
zip_static_dtree = new Array(zip_D_CODES);
for (i = 0; i < zip_D_CODES; i++) zip_static_dtree[i] = new zip_DeflateCT();
zip_bl_tree = new Array(2 * zip_BL_CODES + 1);
for (i = 0; i < 2 * zip_BL_CODES + 1; i++) zip_bl_tree[i] = new zip_DeflateCT();
zip_l_desc = new zip_DeflateTreeDesc();
zip_d_desc = new zip_DeflateTreeDesc();
zip_bl_desc = new zip_DeflateTreeDesc();
zip_bl_count = new Array(zip_MAX_BITS + 1);
zip_heap = new Array(2 * zip_L_CODES + 1);
zip_depth = new Array(2 * zip_L_CODES + 1);
zip_length_code = new Array(MAX_MATCH - MIN_MATCH + 1);
zip_dist_code = new Array(512);
zip_base_length = new Array(zip_LENGTH_CODES);
zip_base_dist = new Array(zip_D_CODES);
zip_flag_buf = new Array(parseInt(LIT_BUFSIZE / 8));
};
var zip_deflate_end = function () {
zip_free_queue = zip_qhead = zip_qtail = null;
zip_outbuf = null;
zip_window = null;
zip_d_buf = null;
zip_l_buf = null;
zip_prev = null;
zip_dyn_ltree = null;
zip_dyn_dtree = null;
zip_static_ltree = null;
zip_static_dtree = null;
zip_bl_tree = null;
zip_l_desc = null;
zip_d_desc = null;
zip_bl_desc = null;
zip_bl_count = null;
zip_heap = null;
zip_depth = null;
zip_length_code = null;
zip_dist_code = null;
zip_base_length = null;
zip_base_dist = null;
zip_flag_buf = null;
};
var zip_reuse_queue = function (p) {
p.next = zip_free_queue;
zip_free_queue = p;
};
var zip_new_queue = function () {
var p;
if (zip_free_queue != null) {
p = zip_free_queue;
zip_free_queue = zip_free_queue.next;
}
else
p = new zip_DeflateBuffer();
p.next = null;
p.len = p.off = 0;
return p;
};
var zip_head1 = function (i) {
return zip_prev[WSIZE + i];
};
var zip_head2 = function (i, val) {
return zip_prev[WSIZE + i] = val;
};
/* put_byte is used for the compressed output, put_ubyte for the
* uncompressed output. However unlzw() uses window for its
* suffix table instead of its output buffer, so it does not use put_ubyte
* (to be cleaned up).
*/
var zip_put_byte = function (c) {
zip_outbuf[zip_outoff + zip_outcnt++] = c;
if (zip_outoff + zip_outcnt == zip_OUTBUFSIZ)
zip_qoutbuf();
};
/* Output a 16 bit value, lsb first */
var zip_put_short = function (w) {
w &= 0xffff;
if (zip_outoff + zip_outcnt < zip_OUTBUFSIZ - 2) {
zip_outbuf[zip_outoff + zip_outcnt++] = (w & 0xff);
zip_outbuf[zip_outoff + zip_outcnt++] = (w >>> 8);
} else {
zip_put_byte(w & 0xff);
zip_put_byte(w >>> 8);
}
};
/* ==========================================================================
* Insert string s in the dictionary and set match_head to the previous head
* of the hash chain (the most recent string with same hash key). Return
* the previous length of the hash chain.
* IN assertion: all calls to to INSERT_STRING are made with consecutive
* input characters and the first MIN_MATCH bytes of s are valid
* (except for the last MIN_MATCH-1 bytes of the input file).
*/
var zip_INSERT_STRING = function () {
zip_ins_h = ((zip_ins_h << zip_H_SHIFT)
^ (zip_window[zip_strstart + MIN_MATCH - 1] & 0xff))
& zip_HASH_MASK;
zip_hash_head = zip_head1(zip_ins_h);
zip_prev[zip_strstart & zip_WMASK] = zip_hash_head;
zip_head2(zip_ins_h, zip_strstart);
};
/* Send a code of the given tree. c and tree must not have side effects */
var zip_SEND_CODE = function (c, tree) {
zip_send_bits(tree[c].fc, tree[c].dl);
};
/* Mapping from a distance to a distance code. dist is the distance - 1 and
* must not have side effects. dist_code[256] and dist_code[257] are never
* used.
*/
var zip_D_CODE = function (dist) {
return (dist < 256 ? zip_dist_code[dist]
: zip_dist_code[256 + (dist >> 7)]) & 0xff;
};
/* ==========================================================================
* Compares to subtrees, using the tree depth as tie breaker when
* the subtrees have equal frequency. This minimizes the worst case length.
*/
var zip_SMALLER = function (tree, n, m) {
return tree[n].fc < tree[m].fc ||
(tree[n].fc == tree[m].fc && zip_depth[n] <= zip_depth[m]);
};
/* ==========================================================================
* read string data
*/
var zip_read_buff = function (buff, offset, n) {
var i;
for (i = 0; i < n && zip_deflate_pos < zip_deflate_data.length; i++)
buff[offset + i] =
zip_deflate_data[zip_deflate_pos++] & 0xff;
return i;
};
/* ==========================================================================
* Initialize the "longest match" routines for a new file
*/
var zip_lm_init = function () {
var j;
/* Initialize the hash table. */
for (j = 0; j < zip_HASH_SIZE; j++)
zip_prev[WSIZE + j] = 0;
zip_max_lazy_match = zip_configuration_table[zip_compr_level].max_lazy;
zip_good_match = zip_configuration_table[zip_compr_level].good_length;
if (!zip_FULL_SEARCH)
zip_nice_match = zip_configuration_table[zip_compr_level].nice_length;
zip_max_chain_length = zip_configuration_table[zip_compr_level].max_chain;
zip_strstart = 0;
zip_block_start = 0;
zip_lookahead = zip_read_buff(zip_window, 0, 2 * WSIZE);
if (zip_lookahead <= 0) {
zip_eofile = true;
zip_lookahead = 0;
return;
}
zip_eofile = false;
/* Make sure that we always have enough lookahead. This is important
* if input comes from a device such as a tty.
*/
while (zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile)
zip_fill_window();
/* If lookahead < MIN_MATCH, ins_h is garbage, but this is
* not important since only literal bytes will be emitted.
*/
zip_ins_h = 0;
for (j = 0; j < MIN_MATCH - 1; j++) {
zip_ins_h = ((zip_ins_h << zip_H_SHIFT) ^ (zip_window[j] & 0xff)) & zip_HASH_MASK;
}
};
/* ==========================================================================
* Set match_start to the longest match starting at the given string and
* return its length. Matches shorter or equal to prev_length are discarded,
* in which case the result is equal to prev_length and match_start is
* garbage.
* IN assertions: cur_match is the head of the hash chain for the current
* string (strstart) and its distance is <= MAX_DIST, and prev_length >= 1
*/
var zip_longest_match = function (cur_match) {
var chain_length = zip_max_chain_length; // max hash chain length
var scanp = zip_strstart; // current string
var matchp; // matched string
var len; // length of current match
var best_len = zip_prev_length; // best match length so far
/* Stop when cur_match becomes <= limit. To simplify the code,
* we prevent matches with the string of window index 0.
*/
var limit = (zip_strstart > zip_MAX_DIST ? zip_strstart - zip_MAX_DIST : zip_NIL);
var strendp = zip_strstart + MAX_MATCH;
var scan_end1 = zip_window[scanp + best_len - 1];
var scan_end = zip_window[scanp + best_len];
/* Do not waste too much time if we already have a good match: */
if (zip_prev_length >= zip_good_match)
chain_length >>= 2;
do {
matchp = cur_match;
/* Skip to next match if the match length cannot increase
* or if the match length is less than 2:
*/
if (zip_window[matchp + best_len] != scan_end ||
zip_window[matchp + best_len - 1] != scan_end1 ||
zip_window[matchp] != zip_window[scanp] ||
zip_window[++matchp] != zip_window[scanp + 1]) {
continue;
}
/* The check at best_len-1 can be removed because it will be made
* again later. (This heuristic is not always a win.)
* It is not necessary to compare scan[2] and match[2] since they
* are always equal when the other bytes match, given that
* the hash keys are equal and that HASH_BITS >= 8.
*/
scanp += 2;
matchp++;
/* We check for insufficient lookahead only every 8th comparison;
* the 256th check will be made at strstart+258.
*/
do {
} while (zip_window[++scanp] == zip_window[++matchp] &&
zip_window[++scanp] == zip_window[++matchp] &&
zip_window[++scanp] == zip_window[++matchp] &&
zip_window[++scanp] == zip_window[++matchp] &&
zip_window[++scanp] == zip_window[++matchp] &&
zip_window[++scanp] == zip_window[++matchp] &&
zip_window[++scanp] == zip_window[++matchp] &&
zip_window[++scanp] == zip_window[++matchp] &&
scanp < strendp);
len = MAX_MATCH - (strendp - scanp);
scanp = strendp - MAX_MATCH;
if (len > best_len) {
zip_match_start = cur_match;
best_len = len;
if (zip_FULL_SEARCH) {
if (len >= MAX_MATCH) break;
} else {
if (len >= zip_nice_match) break;
}
scan_end1 = zip_window[scanp + best_len - 1];
scan_end = zip_window[scanp + best_len];
}
} while ((cur_match = zip_prev[cur_match & zip_WMASK]) > limit
&& --chain_length != 0);
return best_len;
};
/* ==========================================================================
* Fill the window when the lookahead becomes insufficient.
* Updates strstart and lookahead, and sets eofile if end of input file.
* IN assertion: lookahead < MIN_LOOKAHEAD && strstart + lookahead > 0
* OUT assertions: at least one byte has been read, or eofile is set;
* file reads are performed for at least two bytes (required for the
* translate_eol option).
*/
var zip_fill_window = function () {
var n, m;
// Amount of free space at the end of the window.
var more = zip_window_size - zip_lookahead - zip_strstart;
/* If the window is almost full and there is insufficient lookahead,
* move the upper half to the lower one to make room in the upper half.
*/
if (more == -1) {
/* Very unlikely, but possible on 16 bit machine if strstart == 0
* and lookahead == 1 (input done one byte at time)
*/
more--;
} else if (zip_strstart >= WSIZE + zip_MAX_DIST) {
/* By the IN assertion, the window is not empty so we can't confuse
* more == 0 with more == 64K on a 16 bit machine.
*/
for (n = 0; n < WSIZE; n++)
zip_window[n] = zip_window[n + WSIZE];
zip_match_start -= WSIZE;
zip_strstart -= WSIZE;
/* we now have strstart >= MAX_DIST: */
zip_block_start -= WSIZE;
for (n = 0; n < zip_HASH_SIZE; n++) {
m = zip_head1(n);
zip_head2(n, m >= WSIZE ? m - WSIZE : zip_NIL);
}
for (n = 0; n < WSIZE; n++) {
/* If n is not on any hash chain, prev[n] is garbage but
* its value will never be used.
*/
m = zip_prev[n];
zip_prev[n] = (m >= WSIZE ? m - WSIZE : zip_NIL);
}
more += WSIZE;
}
// At this point, more >= 2
if (!zip_eofile) {
n = zip_read_buff(zip_window, zip_strstart + zip_lookahead, more);
if (n <= 0)
zip_eofile = true;
else
zip_lookahead += n;
}
};
/* ==========================================================================
* Processes a new input file and return its compressed length. This
* function does not perform lazy evaluationof matches and inserts
* new strings in the dictionary only for unmatched strings or for short
* matches. It is used only for the fast compression options.
*/
var zip_deflate_fast = function () {
while (zip_lookahead != 0 && zip_qhead == null) {
var flush; // set if current block must be flushed
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
zip_INSERT_STRING();
/* Find the longest match, discarding those <= prev_length.
* At this point we have always match_length < MIN_MATCH
*/
if (zip_hash_head != zip_NIL &&
zip_strstart - zip_hash_head <= zip_MAX_DIST) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
zip_match_length = zip_longest_match(zip_hash_head);
/* longest_match() sets match_start */
if (zip_match_length > zip_lookahead)
zip_match_length = zip_lookahead;
}
if (zip_match_length >= MIN_MATCH) {
flush = zip_ct_tally(zip_strstart - zip_match_start,
zip_match_length - MIN_MATCH);
zip_lookahead -= zip_match_length;
/* Insert new strings in the hash table only if the match length
* is not too large. This saves time but degrades compression.
*/
if (zip_match_length <= zip_max_lazy_match) {
zip_match_length--; // string at strstart already in hash table
do {
zip_strstart++;
zip_INSERT_STRING();
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
* these bytes are garbage, but it does not matter since
* the next lookahead bytes will be emitted as literals.
*/
} while (--zip_match_length != 0);
zip_strstart++;
} else {
zip_strstart += zip_match_length;
zip_match_length = 0;
zip_ins_h = zip_window[zip_strstart] & 0xff;
zip_ins_h = ((zip_ins_h << zip_H_SHIFT) ^ (zip_window[zip_strstart + 1] & 0xff)) & zip_HASH_MASK;
}
} else {
/* No match, output a literal byte */
flush = zip_ct_tally(0, zip_window[zip_strstart] & 0xff);
zip_lookahead--;
zip_strstart++;
}
if (flush) {
zip_flush_block(0);
zip_block_start = zip_strstart;
}
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
while (zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile)
zip_fill_window();
}
};
var zip_deflate_better = function () {
/* Process the input block. */
while (zip_lookahead != 0 && zip_qhead == null) {
/* Insert the string window[strstart .. strstart+2] in the
* dictionary, and set hash_head to the head of the hash chain:
*/
zip_INSERT_STRING();
/* Find the longest match, discarding those <= prev_length.
*/
zip_prev_length = zip_match_length;
zip_prev_match = zip_match_start;
zip_match_length = MIN_MATCH - 1;
if (zip_hash_head != zip_NIL &&
zip_prev_length < zip_max_lazy_match &&
zip_strstart - zip_hash_head <= zip_MAX_DIST) {
/* To simplify the code, we prevent matches with the string
* of window index 0 (in particular we have to avoid a match
* of the string with itself at the start of the input file).
*/
zip_match_length = zip_longest_match(zip_hash_head);
/* longest_match() sets match_start */
if (zip_match_length > zip_lookahead)
zip_match_length = zip_lookahead;
/* Ignore a length 3 match if it is too distant: */
if (zip_match_length == MIN_MATCH &&
zip_strstart - zip_match_start > zip_TOO_FAR) {
/* If prev_match is also MIN_MATCH, match_start is garbage
* but we will ignore the current match anyway.
*/
zip_match_length--;
}
}
/* If there was a match at the previous step and the current
* match is not better, output the previous match:
*/
if (zip_prev_length >= MIN_MATCH &&
zip_match_length <= zip_prev_length) {
var flush; // set if current block must be flushed
flush = zip_ct_tally(zip_strstart - 1 - zip_prev_match,
zip_prev_length - MIN_MATCH);
/* Insert in hash table all strings up to the end of the match.
* strstart-1 and strstart are already inserted.
*/
zip_lookahead -= zip_prev_length - 1;
zip_prev_length -= 2;
do {
zip_strstart++;
zip_INSERT_STRING();
/* strstart never exceeds WSIZE-MAX_MATCH, so there are
* always MIN_MATCH bytes ahead. If lookahead < MIN_MATCH
* these bytes are garbage, but it does not matter since the
* next lookahead bytes will always be emitted as literals.
*/
} while (--zip_prev_length != 0);
zip_match_available = 0;
zip_match_length = MIN_MATCH - 1;
zip_strstart++;
if (flush) {
zip_flush_block(0);
zip_block_start = zip_strstart;
}
} else if (zip_match_available != 0) {
/* If there was no match at the previous position, output a
* single literal. If there was a match but the current match
* is longer, truncate the previous match to a single literal.
*/
if (zip_ct_tally(0, zip_window[zip_strstart - 1] & 0xff)) {
zip_flush_block(0);
zip_block_start = zip_strstart;
}
zip_strstart++;
zip_lookahead--;
} else {
/* There is no previous match to compare with, wait for
* the next step to decide.
*/
zip_match_available = 1;
zip_strstart++;
zip_lookahead--;
}
/* Make sure that we always have enough lookahead, except
* at the end of the input file. We need MAX_MATCH bytes
* for the next match, plus MIN_MATCH bytes to insert the
* string following the next match.
*/
while (zip_lookahead < zip_MIN_LOOKAHEAD && !zip_eofile)
zip_fill_window();
}
};
var zip_init_deflate = function () {
if (zip_eofile)
return;
zip_bi_buf = 0;
zip_bi_valid = 0;
zip_ct_init();
zip_lm_init();
zip_qhead = null;
zip_outcnt = 0;
zip_outoff = 0;
zip_match_available = 0;
if (zip_compr_level <= 3) {
zip_prev_length = MIN_MATCH - 1;
zip_match_length = 0;
}
else {
zip_match_length = MIN_MATCH - 1;
zip_match_available = 0;
zip_match_available = 0;
}
zip_complete = false;
};
/* ==========================================================================
* Same as above, but achieves better compression. We use a lazy
* evaluation for matches: a match is finally adopted only if there is
* no better match at the next window position.
*/
var zip_deflate_internal = function (buff, off, buff_size) {
var n;
if (!zip_initflag) {
zip_init_deflate();
zip_initflag = true;
if (zip_lookahead == 0) { // empty
zip_complete = true;
return 0;
}
}
if ((n = zip_qcopy(buff, off, buff_size)) == buff_size)
return buff_size;
if (zip_complete)
return n;
if (zip_compr_level <= 3) // optimized for speed
zip_deflate_fast();
else
zip_deflate_better();
if (zip_lookahead == 0) {
if (zip_match_available != 0)
zip_ct_tally(0, zip_window[zip_strstart - 1] & 0xff);
zip_flush_block(1);
zip_complete = true;
}
return n + zip_qcopy(buff, n + off, buff_size - n);
};
var zip_qcopy = function (buff, off, buff_size) {
var n, i, j;
n = 0;
while (zip_qhead != null && n < buff_size) {
i = buff_size - n;
if (i > zip_qhead.len)
i = zip_qhead.len;
for (j = 0; j < i; j++)
buff[off + n + j] = zip_qhead.ptr[zip_qhead.off + j];
zip_qhead.off += i;
zip_qhead.len -= i;
n += i;
if (zip_qhead.len == 0) {
var p;
p = zip_qhead;
zip_qhead = zip_qhead.next;
zip_reuse_queue(p);
}
}
if (n == buff_size)
return n;
if (zip_outoff < zip_outcnt) {
i = buff_size - n;
if (i > zip_outcnt - zip_outoff)
i = zip_outcnt - zip_outoff;
// System.arraycopy(outbuf, outoff, buff, off + n, i);
for (j = 0; j < i; j++)
buff[off + n + j] = zip_outbuf[zip_outoff + j];
zip_outoff += i;
n += i;
if (zip_outcnt == zip_outoff)
zip_outcnt = zip_outoff = 0;
}
return n;
};
/* ==========================================================================
* Allocate the match buffer, initialize the various tables and save the
* location of the internal file attribute (ascii/binary) and method
* (DEFLATE/STORE).
*/
var zip_ct_init = function () {
var n; // iterates over tree elements
var bits; // bit counter
var length; // length value
var code; // code value
var dist; // distance index
if (zip_static_dtree[0].dl != 0) return; // ct_init already called
zip_l_desc.dyn_tree = zip_dyn_ltree;
zip_l_desc.static_tree = zip_static_ltree;
zip_l_desc.extra_bits = zip_extra_lbits;
zip_l_desc.extra_base = zip_LITERALS + 1;
zip_l_desc.elems = zip_L_CODES;
zip_l_desc.max_length = zip_MAX_BITS;
zip_l_desc.max_code = 0;
zip_d_desc.dyn_tree = zip_dyn_dtree;
zip_d_desc.static_tree = zip_static_dtree;
zip_d_desc.extra_bits = zip_extra_dbits;
zip_d_desc.extra_base = 0;
zip_d_desc.elems = zip_D_CODES;
zip_d_desc.max_length = zip_MAX_BITS;
zip_d_desc.max_code = 0;
zip_bl_desc.dyn_tree = zip_bl_tree;
zip_bl_desc.static_tree = null;
zip_bl_desc.extra_bits = zip_extra_blbits;
zip_bl_desc.extra_base = 0;
zip_bl_desc.elems = zip_BL_CODES;
zip_bl_desc.max_length = zip_MAX_BL_BITS;
zip_bl_desc.max_code = 0;
// Initialize the mapping length (0..255) -> length code (0..28)
length = 0;
for (code = 0; code < zip_LENGTH_CODES - 1; code++) {
zip_base_length[code] = length;
for (n = 0; n < (1 << zip_extra_lbits[code]); n++)
zip_length_code[length++] = code;
}
/* Note that the length 255 (match length 258) can be represented
* in two different ways: code 284 + 5 bits or code 285, so we
* overwrite length_code[255] to use the best encoding:
*/
zip_length_code[length - 1] = code;
/* Initialize the mapping dist (0..32K) -> dist code (0..29) */
dist = 0;
for (code = 0; code < 16; code++) {
zip_base_dist[code] = dist;
for (n = 0; n < (1 << zip_extra_dbits[code]); n++) {
zip_dist_code[dist++] = code;
}
}
dist >>= 7; // from now on, all distances are divided by 128
for (; code < zip_D_CODES; code++) {
zip_base_dist[code] = dist << 7;
for (n = 0; n < (1 << (zip_extra_dbits[code] - 7)); n++)
zip_dist_code[256 + dist++] = code;
}
// Construct the codes of the static literal tree
for (bits = 0; bits <= zip_MAX_BITS; bits++)
zip_bl_count[bits] = 0;
n = 0;
while (n <= 143) {
zip_static_ltree[n++].dl = 8;
zip_bl_count[8]++;
}
while (n <= 255) {
zip_static_ltree[n++].dl = 9;
zip_bl_count[9]++;
}
while (n <= 279) {
zip_static_ltree[n++].dl = 7;
zip_bl_count[7]++;
}
while (n <= 287) {
zip_static_ltree[n++].dl = 8;
zip_bl_count[8]++;
}
/* Codes 286 and 287 do not exist, but we must include them in the
* tree construction to get a canonical Huffman tree (longest code
* all ones)
*/
zip_gen_codes(zip_static_ltree, zip_L_CODES + 1);
/* The static distance tree is trivial: */
for (n = 0; n < zip_D_CODES; n++) {
zip_static_dtree[n].dl = 5;
zip_static_dtree[n].fc = zip_bi_reverse(n, 5);
}
// Initialize the first block of the first file:
zip_init_block();
};
/* ==========================================================================
* Initialize a new block.
*/
var zip_init_block = function () {
var n; // iterates over tree elements
// Initialize the trees.
for (n = 0; n < zip_L_CODES; n++) zip_dyn_ltree[n].fc = 0;
for (n = 0; n < zip_D_CODES; n++) zip_dyn_dtree[n].fc = 0;
for (n = 0; n < zip_BL_CODES; n++) zip_bl_tree[n].fc = 0;
zip_dyn_ltree[zip_END_BLOCK].fc = 1;
zip_opt_len = zip_static_len = 0;
zip_last_lit = zip_last_dist = zip_last_flags = 0;
zip_flags = 0;
zip_flag_bit = 1;
};
/* ==========================================================================
* Restore the heap property by moving down the tree starting at node k,
* exchanging a node with the smallest of its two sons if necessary, stopping
* when the heap property is re-established (each father smaller than its
* two sons).
*/
var zip_pqdownheap = function (tree, // the tree to restore
k) { // node to move down
var v = zip_heap[k];
var j = k << 1; // left son of k
while (j <= zip_heap_len) {
// Set j to the smallest of the two sons:
if (j < zip_heap_len &&
zip_SMALLER(tree, zip_heap[j + 1], zip_heap[j]))
j++;
// Exit if v is smaller than both sons
if (zip_SMALLER(tree, v, zip_heap[j]))
break;
// Exchange v with the smallest son
zip_heap[k] = zip_heap[j];
k = j;
// And continue down the tree, setting j to the left son of k
j <<= 1;
}
zip_heap[k] = v;
};
/* ==========================================================================
* Compute the optimal bit lengths for a tree and update the total bit length
* for the current block.
* IN assertion: the fields freq and dad are set, heap[heap_max] and
* above are the tree nodes sorted by increasing frequency.
* OUT assertions: the field len is set to the optimal bit length, the
* array bl_count contains the frequencies for each bit length.
* The length opt_len is updated; static_len is also updated if stree is
* not null.
*/
var zip_gen_bitlen = function (desc) { // the tree descriptor
var tree = desc.dyn_tree;
var extra = desc.extra_bits;
var base = desc.extra_base;
var max_code = desc.max_code;
var max_length = desc.max_length;
var stree = desc.static_tree;
var h; // heap index
var n, m; // iterate over the tree elements
var bits; // bit length
var xbits; // extra bits
var f; // frequency
var overflow = 0; // number of elements with bit length too large
for (bits = 0; bits <= zip_MAX_BITS; bits++)
zip_bl_count[bits] = 0;
/* In a first pass, compute the optimal bit lengths (which may
* overflow in the case of the bit length tree).
*/
tree[zip_heap[zip_heap_max]].dl = 0; // root of the heap
for (h = zip_heap_max + 1; h < zip_HEAP_SIZE; h++) {
n = zip_heap[h];
bits = tree[tree[n].dl].dl + 1;
if (bits > max_length) {
bits = max_length;
overflow++;
}
tree[n].dl = bits;
// We overwrite tree[n].dl which is no longer needed
if (n > max_code)
continue; // not a leaf node
zip_bl_count[bits]++;
xbits = 0;
if (n >= base)
xbits = extra[n - base];
f = tree[n].fc;
zip_opt_len += f * (bits + xbits);
if (stree != null)
zip_static_len += f * (stree[n].dl + xbits);
}
if (overflow == 0)
return;
// This happens for example on obj2 and pic of the Calgary corpus
// Find the first bit length which could increase:
do {
bits = max_length - 1;
while (zip_bl_count[bits] == 0)
bits--;
zip_bl_count[bits]--; // move one leaf down the tree
zip_bl_count[bits + 1] += 2; // move one overflow item as its brother
zip_bl_count[max_length]--;
/* The brother of the overflow item also moves one step up,
* but this does not affect bl_count[max_length]
*/
overflow -= 2;
} while (overflow > 0);
/* Now recompute all bit lengths, scanning in increasing frequency.
* h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
* lengths instead of fixing only the wrong ones. This idea is taken
* from 'ar' written by Haruhiko Okumura.)
*/
for (bits = max_length; bits != 0; bits--) {
n = zip_bl_count[bits];
while (n != 0) {
m = zip_heap[--h];
if (m > max_code)
continue;
if (tree[m].dl != bits) {
zip_opt_len += (bits - tree[m].dl) * tree[m].fc;
tree[m].fc = bits;
}
n--;
}
}
};
/* ==========================================================================
* Generate the codes for a given tree and bit counts (which need not be
* optimal).
* IN assertion: the array bl_count contains the bit length statistics for
* the given tree and the field len is set for all tree elements.
* OUT assertion: the field code is set for all tree elements of non
* zero code length.
*/
var zip_gen_codes = function (tree, // the tree to decorate
max_code) { // largest code with non zero frequency
var next_code = new Array(zip_MAX_BITS + 1); // next code value for each bit length
var code = 0; // running code value
var bits; // bit index
var n; // code index
/* The distribution counts are first used to generate the code values
* without bit reversal.
*/
for (bits = 1; bits <= zip_MAX_BITS; bits++) {
code = ((code + zip_bl_count[bits - 1]) << 1);
next_code[bits] = code;
}
/* Check that the bit counts in bl_count are consistent. The last code
* must be all ones.
*/
for (n = 0; n <= max_code; n++) {
var len = tree[n].dl;
if (len == 0)
continue;
// Now reverse the bits
tree[n].fc = zip_bi_reverse(next_code[len]++, len);
}
};
/* ==========================================================================
* Construct one Huffman tree and assigns the code bit strings and lengths.
* Update the total bit length for the current block.
* IN assertion: the field freq is set for all tree elements.
* OUT assertions: the fields len and code are set to the optimal bit length
* and corresponding code. The length opt_len is updated; static_len is
* also updated if stree is not null. The field max_code is set.
*/
var zip_build_tree = function (desc) { // the tree descriptor
var tree = desc.dyn_tree;
var stree = desc.static_tree;
var elems = desc.elems;
var n, m; // iterate over heap elements
var max_code = -1; // largest code with non zero frequency
var node = elems; // next internal node of the tree
/* Construct the initial heap, with least frequent element in
* heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
* heap[0] is not used.
*/
zip_heap_len = 0;
zip_heap_max = zip_HEAP_SIZE;
for (n = 0; n < elems; n++) {
if (tree[n].fc != 0) {
zip_heap[++zip_heap_len] = max_code = n;
zip_depth[n] = 0;
} else
tree[n].dl = 0;
}
/* The pkzip format requires that at least one distance code exists,
* and that at least one bit should be sent even if there is only one
* possible code. So to avoid special checks later on we force at least
* two codes of non zero frequency.
*/
while (zip_heap_len < 2) {
var xnew = zip_heap[++zip_heap_len] = (max_code < 2 ? ++max_code : 0);
tree[xnew].fc = 1;
zip_depth[xnew] = 0;
zip_opt_len--;
if (stree != null)
zip_static_len -= stree[xnew].dl;
// new is 0 or 1 so it does not have extra bits
}
desc.max_code = max_code;
/* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
* establish sub-heaps of increasing lengths:
*/
for (n = zip_heap_len >> 1; n >= 1; n--)
zip_pqdownheap(tree, n);
/* Construct the Huffman tree by repeatedly combining the least two
* frequent nodes.
*/
do {
n = zip_heap[zip_SMALLEST];
zip_heap[zip_SMALLEST] = zip_heap[zip_heap_len--];
zip_pqdownheap(tree, zip_SMALLEST);
m = zip_heap[zip_SMALLEST]; // m = node of next least frequency
// keep the nodes sorted by frequency
zip_heap[--zip_heap_max] = n;
zip_heap[--zip_heap_max] = m;
// Create a new node father of n and m
tree[node].fc = tree[n].fc + tree[m].fc;
if (zip_depth[n] > zip_depth[m] + 1)
zip_depth[node] = zip_depth[n];
else
zip_depth[node] = zip_depth[m] + 1;
tree[n].dl = tree[m].dl = node;
// and insert the new node in the heap
zip_heap[zip_SMALLEST] = node++;
zip_pqdownheap(tree, zip_SMALLEST);
} while (zip_heap_len >= 2);
zip_heap[--zip_heap_max] = zip_heap[zip_SMALLEST];
/* At this point, the fields freq and dad are set. We can now
* generate the bit lengths.
*/
zip_gen_bitlen(desc);
// The field len is now set, we can generate the bit codes
zip_gen_codes(tree, max_code);
};
/* ==========================================================================
* Scan a literal or distance tree to determine the frequencies of the codes
* in the bit length tree. Updates opt_len to take into account the repeat
* counts. (The contribution of the bit length codes will be added later
* during the construction of bl_tree.)
*/
var zip_scan_tree = function (tree,// the tree to be scanned
max_code) { // and its largest code of non zero frequency
var n; // iterates over all tree elements
var prevlen = -1; // last emitted length
var curlen; // length of current code
var nextlen = tree[0].dl; // length of next code
var count = 0; // repeat count of the current code
var max_count = 7; // max repeat count
var min_count = 4; // min repeat count
if (nextlen == 0) {
max_count = 138;
min_count = 3;
}
tree[max_code + 1].dl = 0xffff; // guard
for (n = 0; n <= max_code; n++) {
curlen = nextlen;
nextlen = tree[n + 1].dl;
if (++count < max_count && curlen == nextlen)
continue;
else if (count < min_count)
zip_bl_tree[curlen].fc += count;
else if (curlen != 0) {
if (curlen != prevlen)
zip_bl_tree[curlen].fc++;
zip_bl_tree[zip_REP_3_6].fc++;
} else if (count <= 10)
zip_bl_tree[zip_REPZ_3_10].fc++;
else
zip_bl_tree[zip_REPZ_11_138].fc++;
count = 0;
prevlen = curlen;
if (nextlen == 0) {
max_count = 138;
min_count = 3;
} else if (curlen == nextlen) {
max_count = 6;
min_count = 3;
} else {
max_count = 7;
min_count = 4;
}
}
};
/* ==========================================================================
* Send a literal or distance tree in compressed form, using the codes in
* bl_tree.
*/
var zip_send_tree = function (tree, // the tree to be scanned
max_code) { // and its largest code of non zero frequency
var n; // iterates over all tree elements
var prevlen = -1; // last emitted length
var curlen; // length of current code
var nextlen = tree[0].dl; // length of next code
var count = 0; // repeat count of the current code
var max_count = 7; // max repeat count
var min_count = 4; // min repeat count
/* tree[max_code+1].dl = -1; */
/* guard already set */
if (nextlen == 0) {
max_count = 138;
min_count = 3;
}
for (n = 0; n <= max_code; n++) {
curlen = nextlen;
nextlen = tree[n + 1].dl;
if (++count < max_count && curlen == nextlen) {
continue;
} else if (count < min_count) {
do {
zip_SEND_CODE(curlen, zip_bl_tree);
} while (--count != 0);
} else if (curlen != 0) {
if (curlen != prevlen) {
zip_SEND_CODE(curlen, zip_bl_tree);
count--;
}
// Assert(count >= 3 && count <= 6, " 3_6?");
zip_SEND_CODE(zip_REP_3_6, zip_bl_tree);
zip_send_bits(count - 3, 2);
} else if (count <= 10) {
zip_SEND_CODE(zip_REPZ_3_10, zip_bl_tree);
zip_send_bits(count - 3, 3);
} else {
zip_SEND_CODE(zip_REPZ_11_138, zip_bl_tree);
zip_send_bits(count - 11, 7);
}
count = 0;
prevlen = curlen;
if (nextlen == 0) {
max_count = 138;
min_count = 3;
} else if (curlen == nextlen) {
max_count = 6;
min_count = 3;
} else {
max_count = 7;
min_count = 4;
}
}
};
/* ==========================================================================
* Construct the Huffman tree for the bit lengths and return the index in
* bl_order of the last bit length code to send.
*/
var zip_build_bl_tree = function () {
var max_blindex; // index of last bit length code of non zero freq
// Determine the bit length frequencies for literal and distance trees
zip_scan_tree(zip_dyn_ltree, zip_l_desc.max_code);
zip_scan_tree(zip_dyn_dtree, zip_d_desc.max_code);
// Build the bit length tree:
zip_build_tree(zip_bl_desc);
/* opt_len now includes the length of the tree representations, except
* the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
*/
/* Determine the number of bit length codes to send. The pkzip format
* requires that at least 4 bit length codes be sent. (appnote.txt says
* 3 but the actual value used is 4.)
*/
for (max_blindex = zip_BL_CODES - 1; max_blindex >= 3; max_blindex--) {
if (zip_bl_tree[zip_bl_order[max_blindex]].dl != 0) break;
}
/* Update opt_len to include the bit length tree and counts */
zip_opt_len += 3 * (max_blindex + 1) + 5 + 5 + 4;
return max_blindex;
};
/* ==========================================================================
* Send the header for a block using dynamic Huffman trees: the counts, the
* lengths of the bit length codes, the literal tree and the distance tree.
* IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
*/
var zip_send_all_trees = function (lcodes, dcodes, blcodes) { // number of codes for each tree
var rank; // index in bl_order
zip_send_bits(lcodes - 257, 5); // not +255 as stated in appnote.txt
zip_send_bits(dcodes - 1, 5);
zip_send_bits(blcodes - 4, 4); // not -3 as stated in appnote.txt
for (rank = 0; rank < blcodes; rank++) {
zip_send_bits(zip_bl_tree[zip_bl_order[rank]].dl, 3);
}
// send the literal tree
zip_send_tree(zip_dyn_ltree, lcodes - 1);
// send the distance tree
zip_send_tree(zip_dyn_dtree, dcodes - 1);
};
/* ==========================================================================
* Determine the best encoding for the current block: dynamic trees, static
* trees or store, and output the encoded block to the zip file.
*/
var zip_flush_block = function (eof) { // true if this is the last block for a file
var opt_lenb, static_lenb; // opt_len and static_len in bytes
var max_blindex; // index of last bit length code of non zero freq
var stored_len; // length of input block
stored_len = zip_strstart - zip_block_start;
zip_flag_buf[zip_last_flags] = zip_flags; // Save the flags for the last 8 items
// Construct the literal and distance trees
zip_build_tree(zip_l_desc);
zip_build_tree(zip_d_desc);
/* At this point, opt_len and static_len are the total bit lengths of
* the compressed block data, excluding the tree representations.
*/
/* Build the bit length tree for the above two trees, and get the index
* in bl_order of the last bit length code to send.
*/
max_blindex = zip_build_bl_tree();
// Determine the best encoding. Compute first the block length in bytes
opt_lenb = (zip_opt_len + 3 + 7) >> 3;
static_lenb = (zip_static_len + 3 + 7) >> 3;
if (static_lenb <= opt_lenb)
opt_lenb = static_lenb;
if (stored_len + 4 <= opt_lenb // 4: two words for the lengths
&& zip_block_start >= 0) {
var i;
/* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
* Otherwise we can't have processed more than WSIZE input bytes since
* the last block flush, because compression would have been
* successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
* transform a block into a stored block.
*/
zip_send_bits((zip_STORED_BLOCK << 1) + eof, 3);
/* send block type */
zip_bi_windup();
/* align on byte boundary */
zip_put_short(stored_len);
zip_put_short(~stored_len);
// copy block
for (i = 0; i < stored_len; i++)
zip_put_byte(zip_window[zip_block_start + i]);
} else if (static_lenb == opt_lenb) {
zip_send_bits((zip_STATIC_TREES << 1) + eof, 3);
zip_compress_block(zip_static_ltree, zip_static_dtree);
} else {
zip_send_bits((zip_DYN_TREES << 1) + eof, 3);
zip_send_all_trees(zip_l_desc.max_code + 1,
zip_d_desc.max_code + 1,
max_blindex + 1);
zip_compress_block(zip_dyn_ltree, zip_dyn_dtree);
}
zip_init_block();
if (eof != 0)
zip_bi_windup();
};
/* ==========================================================================
* Save the match info and tally the frequency counts. Return true if
* the current block must be flushed.
*/
var zip_ct_tally = function (dist, // distance of matched string
lc) { // match length-MIN_MATCH or unmatched char (if dist==0)
zip_l_buf[zip_last_lit++] = lc;
if (dist == 0) {
// lc is the unmatched char
zip_dyn_ltree[lc].fc++;
} else {
// Here, lc is the match length - MIN_MATCH
dist--; // dist = match distance - 1
zip_dyn_ltree[zip_length_code[lc] + zip_LITERALS + 1].fc++;
zip_dyn_dtree[zip_D_CODE(dist)].fc++;
zip_d_buf[zip_last_dist++] = dist;
zip_flags |= zip_flag_bit;
}
zip_flag_bit <<= 1;
// Output the flags if they fill a byte
if ((zip_last_lit & 7) == 0) {
zip_flag_buf[zip_last_flags++] = zip_flags;
zip_flags = 0;
zip_flag_bit = 1;
}
// Try to guess if it is profitable to stop the current block here
if (zip_compr_level > 2 && (zip_last_lit & 0xfff) == 0) {
// Compute an upper bound for the compressed length
var out_length = zip_last_lit * 8;
var in_length = zip_strstart - zip_block_start;
var dcode;
for (dcode = 0; dcode < zip_D_CODES; dcode++) {
out_length += zip_dyn_dtree[dcode].fc * (5 + zip_extra_dbits[dcode]);
}
out_length >>= 3;
if (zip_last_dist < parseInt(zip_last_lit / 2) &&
out_length < parseInt(in_length / 2))
return true;
}
return (zip_last_lit == LIT_BUFSIZE - 1 ||
zip_last_dist == zip_DIST_BUFSIZE);
/* We avoid equality with LIT_BUFSIZE because of wraparound at 64K
* on 16 bit machines and because stored blocks are restricted to
* 64K-1 bytes.
*/
};
/* ==========================================================================
* Send the block data compressed using the given Huffman trees
*/
var zip_compress_block = function (ltree, // literal tree
dtree) { // distance tree
var dist; // distance of matched string
var lc; // match length or unmatched char (if dist == 0)
var lx = 0; // running index in l_buf
var dx = 0; // running index in d_buf
var fx = 0; // running index in flag_buf
var flag = 0; // current flags
var code; // the code to send
var extra; // number of extra bits to send
if (zip_last_lit != 0) do {
if ((lx & 7) == 0)
flag = zip_flag_buf[fx++];
lc = zip_l_buf[lx++] & 0xff;
if ((flag & 1) == 0) {
zip_SEND_CODE(lc, ltree);
/* send a literal byte */
} else {
// Here, lc is the match length - MIN_MATCH
code = zip_length_code[lc];
zip_SEND_CODE(code + zip_LITERALS + 1, ltree); // send the length code
extra = zip_extra_lbits[code];
if (extra != 0) {
lc -= zip_base_length[code];
zip_send_bits(lc, extra); // send the extra length bits
}
dist = zip_d_buf[dx++];
// Here, dist is the match distance - 1
code = zip_D_CODE(dist);
zip_SEND_CODE(code, dtree); // send the distance code
extra = zip_extra_dbits[code];
if (extra != 0) {
dist -= zip_base_dist[code];
zip_send_bits(dist, extra); // send the extra distance bits
}
} // literal or match pair ?
flag >>= 1;
} while (lx < zip_last_lit);
zip_SEND_CODE(zip_END_BLOCK, ltree);
};
/* ==========================================================================
* Send a value on a given number of bits.
* IN assertion: length <= 16 and value fits in length bits.
*/
var zip_Buf_size = 16; // bit size of bi_buf
var zip_send_bits = function (value, // value to send
length) { // number of bits
/* If not enough room in bi_buf, use (valid) bits from bi_buf and
* (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
* unused bits in value.
*/
if (zip_bi_valid > zip_Buf_size - length) {
zip_bi_buf |= (value << zip_bi_valid);
zip_put_short(zip_bi_buf);
zip_bi_buf = (value >> (zip_Buf_size - zip_bi_valid));
zip_bi_valid += length - zip_Buf_size;
} else {
zip_bi_buf |= value << zip_bi_valid;
zip_bi_valid += length;
}
};
/* ==========================================================================
* Reverse the first len bits of a code, using straightforward code (a faster
* method would use a table)
* IN assertion: 1 <= len <= 15
*/
var zip_bi_reverse = function (code, // the value to invert
len) { // its bit length
var res = 0;
do {
res |= code & 1;
code >>= 1;
res <<= 1;
} while (--len > 0);
return res >> 1;
};
/* ==========================================================================
* Write out any remaining bits in an incomplete byte.
*/
var zip_bi_windup = function () {
if (zip_bi_valid > 8) {
zip_put_short(zip_bi_buf);
} else if (zip_bi_valid > 0) {
zip_put_byte(zip_bi_buf);
}
zip_bi_buf = 0;
zip_bi_valid = 0;
};
var zip_qoutbuf = function () {
if (zip_outcnt != 0) {
var q, i;
q = zip_new_queue();
if (zip_qhead == null)
zip_qhead = zip_qtail = q;
else
zip_qtail = zip_qtail.next = q;
q.len = zip_outcnt - zip_outoff;
for (i = 0; i < q.len; i++)
q.ptr[i] = zip_outbuf[zip_outoff + i];
zip_outcnt = zip_outoff = 0;
}
};
function deflate(buffData, level) {
zip_deflate_data = buffData;
zip_deflate_pos = 0;
zip_deflate_start(level);
var buff = new Array(1024),
pages = [],
totalSize = 0,
i;
for (i = 0; i < 1024; i++) buff[i] = 0;
while ((i = zip_deflate_internal(buff, 0, buff.length)) > 0) {
var buf = new Buffer(buff.slice(0, i));
pages.push(buf);
totalSize += buf.length;
}
if (pages.length == 1) {
return pages[0];
}
var result = new Buffer(totalSize),
index = 0;
for (i = 0; i < pages.length; i++) {
pages[i].copy(result, index);
index = index + pages[i].length
}
return result;
}
return {
deflate: function () {
return deflate(inbuf, 8);
}
}
}
module.exports = function (/*Buffer*/inbuf) {
var zlib = require("zlib");
return {
deflate: function () {
return new JSDeflater(inbuf).deflate();
},
deflateAsync: function (/*Function*/callback) {
var tmp = zlib.createDeflateRaw({chunkSize:(parseInt(inbuf.length / 1024) + 1)*1024}),
parts = [], total = 0;
tmp.on('data', function(data) {
parts.push(data);
total += data.length;
});
tmp.on('end', function() {
var buf = new Buffer(total), written = 0;
buf.fill(0);
for (var i = 0; i < parts.length; i++) {
var part = parts[i];
part.copy(buf, written);
written += part.length;
}
callback && callback(buf);
});
tmp.end(inbuf);
}
}
};